Genetic interactions among Idd3, Idd5.1, Idd5.2, and Idd5.3 protective loci in the nonobese diabetic mouse model of type 1 diabetes.

نویسندگان

  • Xiaotian Lin
  • Emma E Hamilton-Williams
  • Daniel B Rainbow
  • Kara M Hunter
  • Yang D Dai
  • Jocelyn Cheung
  • Laurence B Peterson
  • Linda S Wicker
  • Linda A Sherman
چکیده

In the NOD mouse model of type 1 diabetes, insulin-dependent diabetes (Idd) loci control the development of insulitis and diabetes. Independently, protective alleles of Idd3/Il2 or Idd5 are able to partially protect congenic NOD mice from insulitis and diabetes, and to partially tolerize islet-specific CD8(+) T cells. However, when the two regions are combined, mice are almost completely protected, strongly suggesting the existence of genetic interactions between the two loci. Idd5 contains at least three protective subregions/causative gene candidates, Idd5.1/Ctla4, Idd5.2/Slc11a1, and Idd5.3/Acadl, yet it is unknown which of them interacts with Idd3/Il2. Through the use of a series of novel congenic strains containing the Idd3/Il2 region and different combinations of Idd5 subregion(s), we defined these genetic interactions. The combination of Idd3/Il2 and Idd5.3/Acadl was able to provide nearly complete protection from type 1 diabetes, but all three Idd5 subregions were required to protect from insulitis and fully restore self-tolerance. By backcrossing a Slc11a1 knockout allele onto the NOD genetic background, we have demonstrated that Slc11a1 is responsible for the diabetes protection resulting from Idd5.2. We also used Slc11a1 knockout-SCID and Idd5.2-SCID mice to show that both loss-of-function alleles provide protection from insulitis when expressed on the SCID host alone. These results lend further support to the hypothesis that Slc11a1 is Idd5.2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Mechanisms of Restored β-Cell Tolerance Mediated by Protective Alleles of Idd3 and Idd5

Type 1 diabetes genes within the interleukin (IL)-2, cytotoxic T-lymphocyte--associated protein 4 (CTLA-4), and natural resistance-associated macrophage protein (NRAMP1) pathways influence development of autoimmune diabetes in humans and NOD mice. In NOD mice, when present together, protective alleles encoding IL-2, Idd3 candidate gene, CTLA-4, NRAMP1, and acetyl-coenzyme A dehydrogenase, long-...

متن کامل

Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse.

At least two loci that determine susceptibility to type 1 diabetes in the NOD mouse have been mapped to chromosome 1, Idd5.1 (insulin-dependent diabetes 5.1) and Idd5.2. In this study, using a series of novel NOD.B10 congenic strains, Idd5.1 has been defined to a 2.1-Mb region containing only four genes, Ctla4, Icos, Als2cr19, and Nrp2 (neuropilin-2), thereby excluding a major candidate gene, C...

متن کامل

Defective induction of CTLA-4 in the NOD mouse is controlled by the NOD allele of Idd3/IL-2 and a novel locus (Ctex) telomeric on chromosome 1.

Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), or CD152, is a negative regulator of T-cell activation and has been shown to be associated with autoimmune diseases. Previous work has demonstrated a defect in the expression of this molecule in nonobese diabetic (NOD) mice upon anti-CD3 stimulation in vitro. Using a genetic approach we here demonstrate that a novel locus (Ctex) telomeric on...

متن کامل

Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes.

In general, common diseases do not follow a Mendelian inheritance pattern. To identify disease mechanisms and etiology, their genetic dissection may be assisted by evaluation of linkage in mouse models of human disease. Statistical modeling of multiple-locus linkage data from the nonobese diabetic (NOD) mouse model of type 1 diabetes has previously provided evidence for epistasis between allele...

متن کامل

Genes within the Idd5 and Idd9/11 diabetes susceptibility loci affect the pathogenic activity of B cells in nonobese diabetic mice.

Autoreactive T cells clearly mediate the pancreatic beta cell destruction causing type 1 diabetes (T1D). However, studies in NOD mice indicate that B cells also contribute to pathogenesis because their ablation by introduction of an Igmunull mutation elicits T1D resistance. T1D susceptibility is restored in NOD.Igmunull mice that are irradiated and reconstituted with syngeneic bone marrow plus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 190 7  شماره 

صفحات  -

تاریخ انتشار 2013